

Complex Rocket Design Considerations

HPR Staging & Air Starting By Gary Stroick

- 1. Tripoli Safety Code
- 2. Technical Considerations
- 3. Clusters/Air Starts
- 4. Staging
- 5. Summary

Tripoli Complex Project Safety Code

- **1. Complex High Power Rocket**. A rocket containing multiple rocket motors.
- 2. **Stability.** The flier shall document the location of the center of pressure and be able to demonstrate the center of gravity.
- 3. All High Power Rockets shall be flown from the distances set forth in the Safe Distance Table.

Installed Total Impulse (N-sec)	Equivalent Motor Type	Single Motor (feet/meter)	Complex (feet/meter)
160.01 – 320.00	н	100/30	200/60
320.01 - 640.00	L	100/30	200/60
640.01 - 1,280.00	J	100/30	200/60
1,280.01 – 2,560.00	К	200/60	300/90
2,560.01 - 5,120.00	L	300/90	500/150
5,120.01 – 10,240.00	М	300/150	1,000/300
10,240.01 - 20,480.00	Ν	1,000/300	1,500/460
20,480.01 - 40,960.00	0	1,500/460	2,000/610
40,960.01 - 889,600.00	P-T	2,000/610	2,500/760

Minimum Safe Distance Table

© 2024 Off We Go Rocketry, LLC

General Technical Considerations

- Motor Selection (Air Start, Cluster or Multi Stage)
 - Propellant Type
 - Avoid Hard Starting Motors (e.g. Greens)!
 - AeroTech
 - Blue Thunder
 - White Lightning
 - Cesaroni
 - Black pellet design permits use of all propellant types (≤54mm)

Core Size

Smaller is Better (e.g. usually implies easier starting)

General Technical Considerations

Igniter/E-Match Selection & Wiring (Air Start or Multi Stage)

- © © +
- 9 Volts 2 x Amperage (1,160 mAh for Duracell)

- Low Amp, High Temp & Large Gas Production Igniters (E=IR)
 - Commercially made: 1) Oxral (5A), 2) J-Tek (9A calculated)
 - Commercial kits: 1) Firestar (8.64A), 2) Magnelite (11.25A)
- Battery Requirements
 - Igniter battery often separate from altimeter
 - Wire igniter batteries in parallel
- Ignition
 - Support Wood dowel/Plastic tube/Thread
 - Roughing Core/Pyrogen Coat/Propellant Slivers
 - Research Head End Ignition
- Premature Ignition
 - Battery Reversal with specific altimeters
 - RF Transmissions
 - To shunt or not to shunt

Recommendation: Test on motors in sustainers before Air Starting or Staging

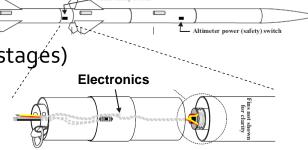
- Why?
- Design Considerations
- Simulation Techniques
- Altimeter Requirements & Programming
- Launch Preparation

Why Stage?

- Additional set of challenges at current cert.
 level
 - Efficient flights to higher altitudes
 - Multiple flight profiles
 - Multiple deployments
 - Combined and individual stability profiles
 - Combination of multiple motor types
 - Construction challenges
 - Sustainer/Booster coupling
 - Electronics driven ignition

What can go Usrong?

- Failure Modes (non-exhaustive)
 - Stage ignition failure
 - Late stage ignition
 - Coupler malfunction
 - Early, late or no deployment
- Resultant Flight Profile
 - Non-vertical flight (horizontal, loops, powered descent, ...)
 - Coupler Failure Issues (Tolerance, Strength, ...)
 - Shredding at high velocities
 - Deployment issues
 - Motor ignition after parachute deployment
 - Parachute deployment during motor burn
 - Zippering
 - Stripping parachute
 - Negative Altitude Records (i.e., Core Sampling)
 - Estimated altitude not reached


Staging – Design Considerations

Inline Staging (Single Sustainer)

- Vertically stacked boosters and sustainer
- Each booster is discarded after motor burnout
- Parallel Staging (Single Sustainer)
 - Similar to Air Starting
 - Boosters are externally attached to the sustainer
 - Each booster separates from the sustainer after its motor burns out
- Parasite Staging (Multiple Sustainers)
 - Similar to Air Starting
 - Sustainers are externally attached to the booster
 - Each sustainer separates after booster burn out

Staging — Configurations

- Inline (e.g. Falcon 9)
 - 2 or more stacked stages (usually not more than 3 stages)
 - Direct ignition is not feasible with APCP motors
- Construction Interstage Couplers
 - Rod or coupling tube design
 - Electronics may perform the following functions:
 - Ignition of next stage
 - Recovery deployment for prior stage
 - Charge separation of stages
- Separation Booster
 - Drag, thrust, or charge separation of stages
 - Upper stage ignition delays (coasting to obtain higher altitudes)
 - Consider igniter firing time and time for motor pressurization
 - Coasting too long can result in reduced altitudes, non-vertical flights, ...
 - Recommend to start initially with no or short delay after booster burnout
- Static/Dynamic Stability
 - All flight configurations must be stable which includes individual boosters, sustainer, and all design combinations
 - Caveat: slow subsonic boosters could tumble but may cause recovery issues
 © 2024 Off We Go Rocketry, LLC

Staging — Configurations

- Parallel (e.g., Delta II)
 - 2 or more external boosters
 - Boosters ignited with sustainer, before, after, or any permutation
- Construction Booster Mounting to Sustainer
 - Aft support options
 - Guides with a pivot rod and notched guides on sustainer
 - Explosive bolts
 - Fore support options
 - Slotted booster with guides and pivot rod, sustainer hook
 - Explosive bolts
 - Electronics may perform the following functions:
 - Booster separation and recovery deployment
 - Sustainer ignition and recovery deployment
- Separation Booster
 - Charge or ejection separation of boosters
 - Separate electronics activation
- Static/Dynamic Stability
 - Again sustainer with all booster flight configurations must be stable
 - Angle boosters through CG when possible

Staging — Configurations

- Parasite (e.g., Space Shuttle kind of)
 - 2 or more sustainers
 - Sustainers ignited after booster burn out
- Construction Sustainer mounting to booster
 - Aft support option
 - Booster has notched supports for sustainer fins
 - Fore support option
 - Booster fitting for sustainer launch lug or rail guide
 - Electronics may perform the following functions:
 - Sustainer ignition, separation and recovery deployment
 - Booster recovery deployment
- Separation Sustainer
 - Thrust or charge separation
- Static/Dynamic Stability
 - Again booster with all sustainer flight configurations must be stable

Staging – Simulation Techniques (Rocksim v10.0.0)

'Rocket design attributes' tab

- Set 'Number of stages:' field (default is one)
 - Use one for Parallel or Parasite designs
 - Use two or more for Inline designs
- 'Rocket design components' tab
 - Components
 - Sustainer (Designation 1 Uppermost stage)
 - Inline
 - Booster (Designation 2 1st or 2nd stage)
 - Booster 3 (Designation 3 1st stage)
 - Design and build each stage
 - There must be at least one motor mount per stage
 - Parallel & Parasite
 - Add one Pod per Booster/Sustainer, name each booster group, leave ejected during simulations box checked, and set radial position
 - Select Pod and build Booster/Sustainer with a motor mount

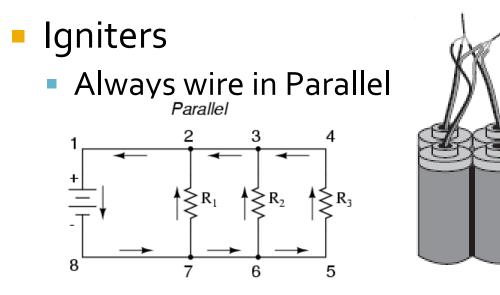
Staging – Simulation Techniques (Rocksim v10.0.0)

- Load Motors using 'Prepare to Launch' dialog box 'Engine Selection' tab
 - Inline Simulation
 - Load motors with appropriate Ignition Delay (coast time)
 - Booster motors must have a non-negative numeric Ejection Delay value to stage (Stage Separation Time)
 - All motors will be ignited in stage sequence
 - Parallel Simulation
 - Load Booster & Sustainer motors with appropriate Ejection and Ignition Delays
 - Use identical Ejection Delay times for all motors that are Boosting simultaneously
 - Booster separation occurs based on Ejection Delay (must have a non-negative numeric value)
 - All Ignition Delay times are measured from burnout of the prior stage (e.g., no tie to pods)
 - Parasite Simulation (limited to one sustainer only!)
 - Load Booster and Sustainer motors with appropriate Ejection and Ignition Delays
 - Booster separation occurs based on Ejection Delay (must have a non-negative numeric value)
 - All ignition delay times are measured from prior stage burnout (e.g., no tie to pods)

Staging – Altimeter Requirements

MINIMUM

- Timer(s)
- Pyro channel control based on:
 - Multiple Timed Delays
- Two or more pyro channels


PREFERRED

- Accelerometer with timer
- Pyro channel control based on:
 - Deceleration Detection
 - Timed Delay
 - Recognition of Multiple Deceleration Events
- Barometer (for dual deployment of main)
- Two or more pyro channels
- Tilt Detection

Staging – Altimeter Programming

- Detect LiftoffFor Each Stage X
 - Do
 - If Barometric Pressure Increasing or Vertical Velocity < o or Tilt > 10° then go to Deployment
 - Until Decelerating Vertically And End of Stage X Time Delay
 - Fire Stage X Igniter(s)
- Next Stage
- Deployment
 - Wait Until Apogee Detected And End of Apogee Time Delay
 - Fire Drogue/Main E-Match(es)

Staging – Launch Preparations

- Consider dipping in pyrogen
- Solid Fuel Motors
 - Roughen top grain core
 - Lightly coat top grain core with pyrogen

Staging Summary

DO'S

- Simulate your flight (all configurations)
- Learn your altimeter and programming alternatives
- Augment igniters and/or motors
- Cant motor mounts through CG (if possible)
- Use robust coupling and separation methods
- Separate batteries for igniters and altimeters as needed

DON'TS

- Use hard starting motors or large core motors in sustainers
- Wire igniters/e-matches in series
- Use high amperage igniters

Cluster/Air Starting

- Why?
- Design Considerations
- Simulation Techniques
- Altimeter Requirements & Programming
- Launch Preparation

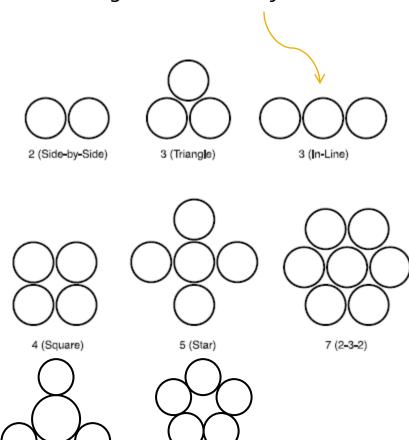
Why Cluster or Air Start?

Cluster

Additional set of challenges at current cert. level

- Igniting multiple motors simultaneously
- Combining multiple motor types
- Centering rings & motor mounts
- Air Start
 - All of the above plus
 - Electronics driven ignitions
 - Combine motors and delays for adjustable flight profile

What can go Usrons?


Asymmetrical Thrust

- One or more motors do not ignite
- One or more motors ignite late
- Resultant Flight Profile
 - Non-vertical flight (angled flight, loops, ...)
 - Unstable due to inadequate thrust (wind cocking)
 - Deployment issues
 - Late (if motor ejection is used)
 - Zippering
 - Stripping parachute
 - Estimated altitude not reached

Clustering/Air Starting – Design Considerations

- Motor Mounting
 - Alignments
 - Axially Parallel
 - Unstable under Asymmetrical Thrust
 - Angled through Center of Gravity
 - Stable under Asymmetrical Thrust
 - Motor Retention
 - Spacing between mounts₍
 - Layout Options
 - Geometries must be balanced
 - Heterogeneous mount sizes

Inline geometries will always require the largest diameter airframe

© 2024 Off We Go Rocketry, LLC

Clustering/Air Starting - Geometries

- 2) Side by Side Requires identical motors
 - a) Not an option for Air Starting
- 3) Alternatives
 - a) Triangle Also requires identical motors and not an Air Starting option
 - b) Inline Outside motors must be identical may be used for Air Starting
- 4) Square Motors opposite of center (diagonal) must be identical
 - a) Up to two motor types may be used
 - b) Up to one air start is possible
- 5) Star Opposite motors must be identical
 - a) Up to three motor types may be used
 - b) Up to two air starts are possible
- 6) Hexagon Opposite motors must be identical
 - a) Six motor configuration (There is also a Rectangle Configuration)
 - i. Up to three motor types may be used
 - ii. Up to two air starts are possible
 - b) Seven motor configuration
 - i. Up to four motor types may be used
 - ii. Up to three air starts are possible

Clustering/Air Starting – Simulation Techniques (Rocksim v10.0.0)

Parallel Motor Mounts

- Add an Inside Tube, name it and mark as motor mount
- Add other components to the motor mount (engine block, ...)
- If more motor tubes of this type are needed select Cluster
 - For uniform mounts select the appropriate pattern and follow the Wizard instructions
 - For non-uniform mounts select "User tube count & radius" option and follow the Wizard instructions
- Select a motor mount and add a centering ring
 - The necessary holes are automatically added
 - Copy the centering ring and reposition as many times as needed
- Canted motor mounts cannot be simulated
 - Copy needed motor files
 - Reduce thrust curve using cosine of motor mount angle

Clustering/Air Starting – Simulation Techniques (Rocksim v10.0.0)

- Load Motors using 'Prepare to Launch' dialog box 'Engine Selection' tab
 - Cluster Simulation
 - Load motors with no Ignition Delay
 - All motors will be ignited simultaneously
 - Air Start Simulation
 - Load motors with Ignition Delays (type value then must hit <enter key> - Rocksim quirk)
 - Use identical Ignition Delay times for all motors that are Air Started simultaneously
 - Use different Ignition Delay times for each set of Air Starts
 - All Ignition Delay times are measured from 1st ignition

Air Starting — Altimeter Requirements

MINIMUM

- Timer(s)
- Pyro channel control based on:
 - Multiple Timed Delays
- Two or more pyro channels

PREFERRED

- Accelerometer with timer
- Pyro channel control based on:
 - Deceleration Detection
 - Timed Delay
 - Recognition of Multiple Deceleration Events
- Barometer (for dual deployment of main)
- Two or more pyro channels
- Tilt Detection

Clustering/Air Starting – Altimeter Programming

- Detect LiftoffFor Each Air Start X
 - Do
 - If Barometric Pressure Increasing or Vertical Velocity < o or Tilt > 10° then go to Deployment
 - Until Decelerating Vertically And End of Air Start X Time Delay
 - Fire Air Start X Igniter(s)
- Next Air Start
- Deployment
 - Wait Until Apogee Detected And End of Apogee Time Delay
 - Fire Drogue/Main E-Match(es)

Clustering/Air Starting – Launch Preparations

- Protect wires with Aluminum Tape
- Consider dipping in pyrogen
- Solid Fuel Motors
 - Roughen top grain core
 - Lightly coat top grain core with pyrogen
- Motor Mounts

Cover empty mounts with Aluminum Tape

Clustering/Air Starting Summary

DO'S

- Protect igniter wiring
- Design for motor retention
- Cant motor mounts through CG
- Simulate your flight
- Learn your altimeter and programming alternatives
- Augment igniters and/or motors
- Separate batteries for igniters and altimeters as needed

DON'TS

- Use hard starting motors or large core motors
- Wire igniters/e-matches in series
- Use high amperage igniters

- Many aspects of Air Starting and Staging are similar
 - Altimeter selection & programming
 - Some design elements
 - Motor and igniter preparation
- Clustering, Air Starting & Staging provide new construction, electronics, and motor challenges at your current certification level
 - Combine all three for even greater challenges